Computational Electromagnetics (CEM) Prediction of a Windmill

2007 EMCC Annual Meeting

8-10 May 2007

Dr. Kueichien Hill and Capt. Gregory Zelinski Air Force Research Laboratory

> Dr. Tri Van*, Mr. Christopher Vogel ATK Space Systems Inc.

> > * Formerly with ATK

DISTRIBUTION NOTICE: THE DATA CONTAINED HEREIN HAS BEEN REVIEWED AND APPROVED FOR PUBLIC RELEASE - DISTRIBUTION UNLIMITED. CASE #SN-07-0181

Government Disclaimer Notice

When the Government provided drawings or data are used for any purpose other than in connection with a definitely related **Government Procurement Operation, the United States Government thereby incurs** no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings or data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Acknowledgements

- Dr. Nicole Evers (General Electric)
 - GE windmill geometry CAD files
- DoD High Performance Computing Modernization Program
 - High performance computers (SGI Origin)

Outline

- Objective of modeling effort
- Develop modeling procedure
 - Generate geometry
 - Run CEM code
 - Generate RCS plots and Spectrograms

Validate modeling procedure

- L, S, C, X-band
- Representative azimuth angles
- Multiple elevation angles
 - L,S: -10[°], 5[°], 0[°], 5[°], 10[°]
 - C,X: 0^o only

Examine tradeoffs

- Multiple mesh densities
- Entire geometry vs. only rotational parts
- Sampling rate of rotational angles
- Max Doppler estimation
- Summary

Objective of Windmill Modeling Effort

Determine if CEM tools can be used for new windmill designs with sufficient confidence to

- Assess RF environment impacts
- Avoid future need for field testing

General Electric Windmill

Windmill Model

Windmill Modeling

CEM predictions need to be accurate and timely.

- Accurate --- Can prediction reproduce measured data?
 - Validate prediction with available measured data
 - Multiple bands: L, S, C, and X band
 - Multiple angles: azimuth and elevation
- Timely --- Can we trade accuracy for speed?
 - Do we need all the geometry fidelity?
 - True geometry with fine, medium, and coarse meshes
 - True geometry vs. simplified hub/nacelle/tower
 - Can we neglect blades and tower interaction?
 - Full geometry vs. rotational parts only
 - Can we reduce the blade rotational sampling rate?
 - 3 times Nyquist rate vs. 2 times Nyquist rate
 - Can we estimate the maximum Doppler frequencies?
 - Use a simple formulation

Windmill Modeling Matrix

Use available measured data to validate predictions

Selected Prediction Angles and Frequencies

Windmill Modeling Validation

Compare measurement and prediction – Radar cross section (RCS) versus time

- Spectrograms (Doppler spectra versus Time)

CEM Prediction Tools

- ACAD (CAD/mesh generation tool) is capable of producing
 - High precision geometrical entities
 - High quality meshes suitable for CEM simulations

- Xpatch (RCS prediction tool) is suitable for electrically large targets
 - Windmill is electrically large even at the lowest frequency of interest
 - GE 34a blade is 170 λ long at 1.5 GHz
 - Tower is 325 λ long at 1.5 GHz

Windmill Modeling Procedure

Generate geometry input

- Obtain CAD model in "standard" file formats (STEP and IGES) from General Electric
- Rebuild CAD model and generate mesh in **ACAD**

Material input assumption

- Physical blades made of composite materials
- Assume metal blades for computation

Run CEM codes

- Predict RCS using the **Xpatch** code on SGI Origin 3900 computer systems
- Include the effect of blades and tower interaction
- Assume no traveling wave, surface wave, etc.

Generate output products

- RCS vs. time plots
- Spectrogram

Windmill Model

Generate Geometry Input

Generate Geometry Input Problem with CAD Geometry

Generate Geometry Input Lofting Surfaces in ACAD

Generate Geometry Input Rebuilt Blade in ACAD – Surface Needs to be Watertight

Generate Geometry Input Rebuilt Blade in ACAD

Generate Geometry Input Mesh of a Blade

Generate Geometry Input Problem with Nacelle and Hub

Even with extreme care, a mesh was not obtainable due to many "bad" surfaces with tiny slivers and overlaps.

Gaps < 0.000001 m !

Generate Geometry Input Hub and Blades Mesh

Generate Geometry Input Nacelle Mesh

Generate Geometry Input Nose Cone Mesh

Generate Geometry Input Tower Mesh

Generate Geometry Input Windmill Mesh

Meshes of different densities can now be easily generated with the reconstructed geometry.

Generate Geometry Input Actual vs. ACAD Model

Actual GE Wind Turbine

ACAD Model

Generate Geometry Input Meshes Statistics

No. of facets	Mesh 1 (Coarse)	Mesh 2 (Medium)	Mesh 3 (Fine)	
Nose Cone	2,641	7,293	15,543	
Hub & Blades	56,586	140,514	279,284	
Nacelle	18,774	45,588	86,098	
Tower 22,730 (fixed mesh)		22,730	22,730	
Total	100,731	216,125	403,655	

Generate Geometry Input Meshes Statistics

	Mesh 1 (Coarse)	Mesh 2 (Medium)	Mesh 3 (Fine)
L-band (1.5 GHz)	Min: λ/6 Mean: λ/4.5 Max: λ/3	Min: λ/14.4 Mean: λ/10.8 Max: λ/7.2	Min: λ/23.2 Mean: λ/17.4 Max: λ/11.6
S-band (3.6 GHz)	Min: λ/2.4 Mean: λ/1.8 Max: λ/1.2	Min: λ/6 Mean: λ/4.5 Max: λ/3	Min: λ/9.3 Mean: λ/6.95 Max: λ/4.6
C-band (5.8 GHz)	Min: λ/1.5 Mean: λ/1.13 Max: λ/0.75	Min: λ/3.6 Mean: λ/2.7 Max: λ/1.8	Min: λ/6 Mean: λ/4.5 Max: λ/3
X-band (9.7 GHz)	Min: λ/0.9 Mean: λ/0.68 Max: λ/0.45	Min: λ/2.16 Mean: λ/1.62 Max: λ/1.08	Min: λ/3.48 Mean: λ/2.61 Max: λ/1.74

Generate Geometry Input Nose Cone Coarse Mesh

Generate Geometry Input Nose Cone Medium Mesh

Generate Geometry Input Nose Cone Fine Mesh

Run CEM Code - Xpatch

Need to compute only 0° to 120° rotation angles.

Need to compute only 0° to 120° rotation angles.

Need to compute only 0° to 120° rotation angles.

Need to compute only 0° to 120° rotation angles.

Need to compute only 0° to 120° rotation angles.

Blade Rotation Minimum Requirements

- To capture multi-bounces, sampling rate needs to be at least twice the Nyquist sampling rate.
- RPM can cause significant change in Doppler Frequency!

- Nyquist sampling rate
 - L-band: 1,500 angles
 - S-band: 3,428 angles
 - C-band: 6,000 angles
 - X-band: 12,000 angles
 - Computed sampling rate
 - L-band: **4,800** angles (every 0.025°)
 - S-band: **6,000** angles (every 0.02°)
 - C-band: **12,000** angles (every 0.01°)
 - X-band: **24,000** angles (every 0.005°)
 - Still being computed

Computational Matrix

SGI Origin 3900 for Coarse Mesh at 2x Nyquist Rate

Freq	-10º	-5 ⁰	0 <u>°</u>	5 ^º	10º
L-band AZ°	0 (14 hrs)	0 (14 hrs)	0 (14 hrs)	0 (14 hrs)	0 (14 hrs)
4,801 runs per	46 (14 hrs)	46 (14 hrs)	46 (14 hrs)	46 (14 hrs)	46 (14 hrs)
(EL,AZ)	100 (14 hrs)	100 (14 hrs)	100 (14 hrs)	100 (14 hrs)	100 (14 hrs)
40 CPUs	170 (14 hrs)	170 (14 hrs)	170 (14 hrs)	170 (14 hrs)	170 (14 hrs)
7 minutes/run	(2.3 days)	(2.3 days)	(2.3 days)	(2.3 days)	(2.3 days)
S-band AZ°	10 (24 hrs)	10 (24 hrs)	10 (24 hrs)	10 (24 hrs)	10 (24 hrs)
6,001 runs per	92 (24 hrs)	92 (24 hrs)	92 (24 hrs)	92 (24 hrs)	92 (24 hrs)
(EL,AZ)	137 (24 hrs)	137 (24 hrs)	137 (24 hrs)	137 (24 hrs)	137 (24 hrs)
60 CPUs	188 (24 hrs)	188 (24 hrs)	188 (24 hrs)	188 (24 hrs)	188 (24 hrs)
40 minutes/run	(4 days)	(4 days)	(4 days)	(4 days)	(4 days)
C-band AZ°	10	10	10 (63 hrs)	10	10
12,001 runs per (EL,AZ)	42	42	42 (63 hrs)	42	42
	97	97	97 (63 hrs)	97	97
120 CPUs	359	359	359 (63 hrs)	359	359
1.7 hours/run			(7 days)		
X-band AZ°	5	5	5	5	5
24,001 runs per	96	96	96	96	96
(EL,AZ)	101	101	101	101	101
	310	310	310	310	310
4.8 hours/run					
Validation: Compare Measured and Xpatch Predicted RCS vs. Time

L-Band – Coarse Mesh with 4,800 blade rotations S-Band – Coarse Mesh with 6,000 blade rotations C-Band – Coarse Mesh with 12,000 blade rotations

Note: Measured and Predicted data are zero-Doppler filtered

Measured vs. Predicted RCS L-band, 170° AZ, 0° EL, RPM = 12.7, VV-pol

- Prediction captures the measurement pattern
- Predicted RCS levels comparable with measured RCS
- Spikes in the prediction are artifact due to coarse mesh sampling
- Elevation and pitch angles differ for measurement and prediction
- Fiberglass was modeled as metal in prediction

Measured vs. Predicted RCS L-band, 0° AZ, 0° EL, RPM = 12.5, HH-pol

- Prediction captures the measurement pattern
- Blades are flexible in measurement but fixed in prediction
- Elevation and pitch angles differ for measurement and prediction.
- Fiberglass was modeled as metal in prediction

APPROVED FOR PUBLIC RELEASE - DISTRIBUTION UNLIMITED; CASE #SN-07-0181 Measured vs. Predicted RCS S-band, 137° AZ, -5° EL, RPM = 12.4, HH-pol

- Prediction captures the measurement pattern
- RCS levels within measurement uncertainty
- Elevation and pitch angles differ for measurement and prediction.
- Fiberglass was modeled as metal in prediction

APPROVED FOR PUBLIC RELEASE - DISTRIBUTION UNLIMITED; CASE #SN-07-0181 Measured vs. Predicted RCS C-band, 42° AZ, 0° EL, RPM = 12.4, VV-pol

- Prediction captures the measurement pattern
- RCS level within measurement uncertainty
- Pitch angles changed during measurement

Validation: Compare Measured and Xpatch Predicted Spectrograms

L-band (1.5 GHz) – Coarse Mesh with 4,800 Blade Rotations

Note: Measured and Xpatch data are zero-Doppler filtered

Measured vs. Predicted Spectrograms L-band, 0° AZ, RPM = 12.5, HH-pol

ZDP, 1.5 GHz, 0° AZ, 5° EL, RPM = 12.5, NFFT = 256, Sampling Rate = 3.00 kHz, HH-pol ZDP, 1.5 GHz, 0° AZ, 10° EL, RPM = 12.5, NFFT = 256, Sampling Rate = 3.00 kHz, HH-pol

Xpatch Prediction

Measured vs. Predicted Spectrograms L-band, 0° AZ, 0° EL, RPM = 12.5, HH-pol

Site: GE, WT#: 19, EL = -0.94°

EL = 0°

Measured vs. Predicted Spectrograms L-band, 100° AZ, RPM = 14.3, VV-pol

Xpatch Prediction

Measured vs. Predicted Spectrograms L-band, 100° AZ, 0° EL, RPM = 14.3, VV-pol

Site: GE, WT#: 12, EL = -2.60°

EL = 0°

Measured vs. Predicted Spectrograms S-band, 137° AZ, -5° EL, RPM = 12.4, HH-pol

Site: 6, WT#: 2, EL = -5.80°

Note the shadowed regions in the spectrogram

Measured vs. Predicted Spectrograms C-band, 42° AZ, 0° EL, RPM = 12.4, VV-pol

Site: 2, WT#: 17, EL= -0.28°

 $EL = 0^{\circ}$

Measured vs. Predicted Spectrograms C-band, 97° AZ, 0° EL, RPM = 18.0, HH-pol

Site: GE, WT#: 12, EL = -2.60°

 $EL = 0^{\circ}$

Trade Study: Compare Effects of Mesh Density

L-Band – 4,800 Blade Rotations S-Band – 6,000 Blade Rotations C-Band – 12,000 Blade Rotations

APPROVED FOR PUBLIC RELEASE - DISTRIBUTION UNLIMITED; CASE #SN-07-0181 Mesh Comparison L-band, 0° AZ, 0° EL, HH-pol

AM6129H, L-band, 0° AZ, NFFT = 2048, Num. Int. = 2, Eff. PRF = 30.3 kHz, HH-pol

Mesh Comparison S-band, 137° AZ, 0° EL, HH-pol

Mesh Comparison S-band, 188° AZ, 0° EL, VV-pol

Trade Study: Blade Rotation Angle Sampling Rates

L-Band – Coarse Mesh S-Band – Coarse Mesh C-Band – Coarse Mesh

APPROVED FOR PUBLIC RELEASE - DISTRIBUTION UNLIMITED; CASE #SN-07-0181 Sampling Rate's Effect on Spectrograms L-band, 46° AZ, 0° EL, RPM = 14.0, VV-pol

- Sampling more angles captures more higher order interactions
- Computation time increases proportionally with number of angles

APPROVED FOR PUBLIC RELEASE - DISTRIBUTION UNLIMITED; CASE #SN-07-0181 Sampling Rate's Effect on Spectrograms L-band, 100 °AZ, 0° EL, RPM = 14.0, VV-pol

- Sampling more angles captures more higher order interactions
- Computation time increases proportionally with number of angles

Sampling Rate's Effect on Spectrograms C-band, 97° AZ, 0° EL, RPM = 18.0

Nyquist sampling corresponds to 6000 angles

- Sampling more angles captures more higher order interactions
- Computation time increases proportionally with number of angles

Trade Study: "Simplified" vs. "True" Windmill

L-band – Coarse Mesh with 4,800 Blade rotations

APPROVED FOR PUBLIC RELEASE - DISTRIBUTION UNLIMITED; CASE #SN-07-0181 "Simplified" vs. "True" Windmill 25% Run-Time Reduction

True windmill has 100,731 facets

"Simplified" vs. "True" Windmill True Blades with Simplified Hub/Nacelle/tower

True Blades with simplified hub

Simplified Nacelle and Tower

Simplified Hub

"Simplified" vs. "True" Windmill L-band, 0° AZ, 0° EL, RPM = 12.5, HH-pol

"Simplified" vs. "True" Windmill L-band, 100° AZ, 0° EL, RPM = 14.3, VV-pol

Trade Study: Entire Geometry vs. Only Rotational Components

L-band (1.5 GHz); Coarse Mesh; 4,800 rotations S-band (3.6 GHz); Coarse Mesh; 6,000 rotations C-band (5.8 GHz); Coarse Mesh; 12,000 rotations

Entire Windmill vs. Only Rotational Parts

Blades, Hub, and Nose Cone

APPROVED FOR PUBLIC RELEASE - DISTRIBUTION UNLIMITED; CASE #SN-07-0181 Entire Windmill vs. Only Rotational Parts L-band, 0° AZ, 0° EL, RPM = 12.5, HH-pol

Entire Windmill vs. Only Rotational Parts L-band, 46° AZ, 0° EL, RPM = 12.3, VV-pol

APPROVED FOR PUBLIC RELEASE - DISTRIBUTION UNLIMITED; CASE #SN-07-0181 Entire Windmill vs. Only Rotational Parts L-band, 100° AZ, 0° EL, RPM = 14.3, VV-pol

APPROVED FOR PUBLIC RELEASE - DISTRIBUTION UNLIMITED; CASE #SN-07-0181 Entire Windmill vs. Only Rotational Parts L-band, 100° AZ, 0° EL, RPM = 19.6, HH-pol

APPROVED FOR PUBLIC RELEASE - DISTRIBUTION UNLIMITED; CASE #SN-07-0181 Entire Windmill vs. Only Rotational Parts L-band, 170° AZ, 0° EL, RPM = 12.7, VV-pol

Spectrogram missing interaction between blades and tower

'LDP, 1.5 GHz, 170° AZ, 0° EL, RPM = 12.7, NFFT = 256, Sampling Rate = 3.05 kHz, VV-pol 1.5 GHz, 170° AZ, 0° EL, RPM = 12.7, NFFT = 256, Sampling Rate = 3.05 kHz, VV-pol

APPROVED FOR PUBLIC RELEASE - DISTRIBUTION UNLIMITED; CASE #SN-07-0181 Entire Windmill vs. Only Rotational Parts S-band, 10° AZ, 0° EL, RPM = 14.8, HH-pol

APPROVED FOR PUBLIC RELEASE - DISTRIBUTION UNLIMITED; CASE #SN-07-0181 Entire Windmill vs. Only Rotational Parts S-band, 92° AZ, 0° EL, RPM = 21.2, HH-pol

APPROVED FOR PUBLIC RELEASE - DISTRIBUTION UNLIMITED; CASE #SN-07-0181 Entire Windmill vs. Only Rotational Parts S-band, 137° AZ, 0° EL, RPM = 12.4, HH-pol

Note the shadowed regions do not appear without the tower

APPROVED FOR PUBLIC RELEASE - DISTRIBUTION UNLIMITED; CASE #SN-07-0181 Entire Windmill vs. Only Rotational Parts S-band, 188° AZ, 0° EL, RPM = 12.2, HH-pol

APPROVED FOR PUBLIC RELEASE - DISTRIBUTION UNLIMITED; CASE #SN-07-0181 Entire Windmill vs. Only Rotational Parts C-band, 42° AZ, 0° EL, RPM = 14.2, HH-pol

APPROVED FOR PUBLIC RELEASE - DISTRIBUTION UNLIMITED; CASE #SN-07-0181 Entire Windmill vs. Only Rotational Parts C-band, 97° AZ, 0° EL, RPM = 18.0, HH-pol

APPROVED FOR PUBLIC RELEASE - DISTRIBUTION UNLIMITED; CASE #SN-07-0181 Entire Windmill vs. Only Rotational Parts C-band, 359° AZ, 0° EL, RPM = 14.9, VV-pol

Maximum Doppler Estimation

L-band (1.5 GHz); Coarse Mesh; 4,800 rotations S-band (3.6 GHz); Coarse Mesh; 6,000 rotations C-band (5.8 GHz); Coarse Mesh; 12,000 rotations Maximum Doppler for 12-22 RPM APPROVED FOR PUBLIC RELEASE - DISTRIBUTION UNLIMITED; CASE #SN-07-0181

Maximum Doppler Estimation L-band, 100° AZ, RPM = 14.3, VV-pol

APPROVED FOR PUBLIC RELEASE - DISTRIBUTION UNLIMITED; CASE #SN-07-0181

Maximum Doppler Estimation L-band, 46° AZ, RPM = 12.3, VV-pol

79

APPROVED FOR PUBLIC RELEASE - DISTRIBUTION UNLIMITED; CASE #SN-07-0181

Maximum Doppler Estimation L-band, 0° AZ, RPM = 12.5, HH-pol

Summary (1)

- Geometry preparation is tedious and time consuming
- Spectrogram captures major Doppler effects with only
 - Using a very coarse geometry mesh
 - Sampling at Nyquist rate
 - Simplifying hub/nacelle/tower geometry
 - Including only rotating parts
- Prediction can produce accurate RCS, but can be improved with
 - a more precise geometry
 - finer mesh
 - known pitch angle
 - higher rotational angle sampling rate
 - actual material and internal structure
- Knowledge of radar systems crucial in determining prediction accuracy requirements

Summary (2)

Measurement vs. Prediction

- Measurement
 - Can measure "as built" configuration
 - Include all RF effects
 - Includes dynamic effects of bending and twisting of composite blades

Prediction

- Is not limited to certain azimuth and elevation angles
- Is not limited by weather and measurement equipment availability
- Can predict systems before they are built